My Stack
Leonard WeiseHere's where I'm currently most productive:
1. DB
I've found serverless Postgres for general and Mysql for heavy duty lifting, and libsql for near-edge hosting, to be incredibly powerful.
- Mysql for performance
- Libsql for low-latency
- Postgres for everything else
2. ORM
For TypeScript, I've found Drizzle ORM the best to work with in fast iteration cycles
Primary: Drizzle
import { pgTable, serial, timestamp, numeric } from 'drizzle-orm/pg-core'
export const metrics = pgTable('metrics', {
id: serial('id').primaryKey(),
timestamp: timestamp('timestamp').notNull(),
value: numeric('value', { precision: 18, scale: 8 }).notNull(),
volatility: numeric('volatility', { precision: 10, scale: 4 }),
volume: numeric('volume', { precision: 16, scale: 2 }),
})
3. Rendering
Primary: React Server Components
I use React Server Components extensively, enhanced with tRPC for end-to-end type safety:
// Financial data fetching with tRPC
export default async function Dashboard() {
const data = await api.metrics.getDaily.query({
metrics: ['volatility', 'volume'],
timeframe: '24h'
});
return (
<DataGrid
metrics={data}
components={{
VolumeChart: () => <VolumeAnalysis data={data.volume} />,
VolatilitySeries: () => <VolatilityIndicator data={data.volatility} />
}}
/>
);
}
4. Dev Tools
- Bun for the fastest build times and smallest bundle sizes
- Typebox for runtime type validation
- Redis for high-performance caching
- Python + NumPy for complex financial computations
5. Style
- Performance-first mindset, especially for financial data processing
- Strong type safety throughout the stack
- Careful attention to numerical precision in financial calculations
- Real-time capabilities through WebSocket integrations
- Comprehensive testing for calculation accuracy